
Cptr350 Chapter 4 — The Processor - Datapath 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 4
The Processor
Pipelining

Single-Cycle Disadvantages & Advantages
n Uses the clock cycle inefficiently – the clock cycle

must be timed to accommodate the slowest
instruction.
n This would be especially problematic for more complex

instructions like floating point multiply.

n May be wasteful of area. Some functional units (e.g.,
adders, memory) must be duplicated since they can
not be shared during a clock cycle.

n However, the single-cycle implementation is simple
and easy to understand.

Clk

lw sw Waste

Cycle 1 Cycle 2

Cptr350 Chapter 4 — The Processor - Datapath 2

The Single-Cycle Datapath

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
Data 1

Read
Data 2

ALU

ovf

zero

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend16 32

MemtoReg

ALUSrc

Shift
left 2

Add

PCSrc

RegDst

ALU
control

1

1

1

0
0

0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control
Unit

Instr[31-26]

Branch

Shift
left 2

0

1

Jump

32
Instr[25-0]

26
PC+4[31-28]

28

The Five Stages of the Load Instruction

n IFetch: Instruction Fetch and Update PC
n Dec: Instruction Decode and Register fetch
n Exec: Execute R-type; calculate memory address
n Mem: Read/write the data from/to the Data Memory
n WB: Write the result into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Cptr350 Chapter 4 — The Processor - Datapath 3

A Pipelined MIPS Processor
n Start the next instruction before the current one has completed

n Improves throughput - total amount of work done in a given time.
n Instruction latency (time from the start of an instruction to its

completion) is not reduced. It is often increased due to imbalances
between stages.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WBlw

Cycle 7Cycle 6 Cycle 8

sw IFetch Dec Exec Mem

R-type IFetch Dec Exec WB

§ Clock cycle (pipeline stage time) is limited by the slowest stage.
§ For some stages, we don’t need the whole clock cycle (e.g., WB).
§ For some instructions, some stages are wasted cycles (i.e., nothing is

done during that cycle for that instruction).

Pipeline Performance
Single-cycle (cycle time = 800ps)

Pipelined (cycle time = 200ps)

Cptr350 Chapter 4 — The Processor - Datapath 4

Pipelining the MIPS ISA

n What makes it easy
n All instructions are the same length (32 bits)

n Can fetch in the 1st stage and decode in the 2nd stage.
n Few instruction formats (three) with symmetry across

formats
n Can begin reading register file in 2nd stage.

n Memory operations occur only in loads and stores
n Can use the execute stage to calculate memory addresses.

n Each instruction writes at most one result (i.e., changes
the machine state) and does it in the last pipeline stages
(MEM or WB).

n Operands must be aligned in memory so a single data
transfer takes only one data memory access.

Graphically Representing MIPS Pipeline

n Can help with answering questions like:
n How many cycles does it take to execute this code?
n What is the ALU doing during cycle 4?
n Is there a hazard (whatever that is), why does it occur,

and how can it be fixed?

A
LUIM Reg DM Reg

Cptr350 Chapter 4 — The Processor - Datapath 5

Five Instruction Sequence

Once the
pipeline is

full, one
instruction is

completed
every cycle,

so CPI = 1

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

A
LUIM Reg DM Reg

Time to fill the pipeline

Other Pipeline Structures Are Possible
n What about a slow multiply instruction?

n Make the clock twice as slow or …
n Let it take two cycles (since it doesn’t use the DM

stage).

A
LUIM Reg DM Reg

MUL

A
LUIM Reg DM1 RegDM2

n What if the data memory access is twice as slow as
the instruction memory?
n Make the clock twice as slow or …
n Let data memory access take two cycles (and keep the

same clock rate).

Cptr350 Chapter 4 — The Processor - Datapath 6

Other Pipeline Architectures
n ARM7

A
LUIM1 IM2 DM1 Reg

DM2

IM Reg EX

PC update
IM access

decode
reg

access

ALU op
DM access
shift/rotate

commit result
(write back)

Reg SHFT

PC update
BTB access

start IM access

IM access

decode
reg 1 access

shift/rotate
reg 2 access

ALU op

start DM access
exception

DM write
reg write

n Motorola XScale

Latches and Clocks in Single-Cycle Design

PC Instr
Mem

Reg
File ALU Data

MemoryAddr

n The entire instruction executes in a single cycle.
n Green blocks are latches.
n At the rising edge, a new PC is latched.
n At the rising edge, the result of the previous cycle is latched.
n At the falling edge, the address of LW/SW is latched so we can

access the data memory in the 2nd half of the cycle.

Cptr350 Chapter 4 — The Processor - Datapath 7

Multi-Stage Circuit

PC
Instr
Mem

ALU Data
Memory

L2
Reg
File

L3 L4

Reg
File

L5

n Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch.

Pipeline Registers

n Need registers between stages to hold information
produced in previous cycle.

Cptr350 Chapter 4 — The Processor - Datapath 8

The Assembly Line

A

Start and finish a job before moving on.

Time

Jobs

Break the job into smaller stages.B C
A B C

A B C
A B C

Unpipelined

Pipelined

Instruction Fetch

Cptr350 Chapter 4 — The Processor - Datapath 9

Instruction Decode and Register Fetch

Execute

Cptr350 Chapter 4 — The Processor - Datapath 10

Memory Access (Load or Store)

Write-back

Wrong
register
number

Cptr350 Chapter 4 — The Processor - Datapath 11

Corrected Datapath for Load Instruction

Execute Stage for Store Instruction

Cptr350 Chapter 4 — The Processor - Datapath 12

Memory Access Stage for Store

Write-back Stage for Store Instruction

Cptr350 Chapter 4 — The Processor - Datapath 13

Performance Improvements?

n Compared to single-cycle execution
n Does it take longer to finish each individual instruction?
n Does it take longer to finish a series of instructions?
n Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

n As a result of pipelining:
n Time in ns/instruction increases.
n Each instruction takes more cycles to execute.
n But… average CPI remains roughly the same.
n Clock speed goes up.
n Total execution time goes down, resulting in lower average

time per instruction.
n Under ideal conditions,

n Speedup = ratio of elapsed times between successive
instruction completions = number of pipeline stages =
increase in clock speed

Cptr350 Chapter 4 — The Processor - Datapath 14

Can Pipelining Get Us Into Trouble?
n Yes: Pipeline Hazards

n Structural hazards: attempt to use the same resource
by two different instructions at the same time.

n Data hazards: attempt to use data before it is ready
n An instruction’s source operand(s) are produced by a

prior instruction still in the pipeline.
n Control hazards: attempt to make a decision about

program control flow before the condition has been
evaluated and the new PC target address calculated

n Branch and jump instructions, exceptions.

n Hazards can usually be resolved by waiting.
n Pipeline control must detect the hazard and take

action to resolve it.

Summary

n All modern day processors use pipelining.
n Pipelining doesn’t help latency of single task, it helps
throughput of entire workload.

n Potential speedup: a CPI of 1 and faster Clock Cycle.
n Pipeline rate limited by slowest pipeline stage

n Unbalanced pipe stages make for inefficiencies.
n The time to “fill” pipeline and time to “drain” it can

impact speedup for deep pipelines and short code runs.

n Must detect and resolve hazards
n Stalling negatively affects CPI.

