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| Chapter 4

| The Processor
Pipelining

| Single-Cycle Disadvantages & Advantages

l Uses the clock cycle inefficiently — the clock cycle

must be timed to accommodate the slowest
instruction.

This would be especially problematic for more complex
instructions like floating point multiply.
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May be wasteful of area. Some functional units (e.g.,

adders, memory) must be duplicated since they can
not be shared during a clock cycle.

However, the single-cycle implementation is simple
and easy to understand.
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The Single-Cycle Datapath
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The Five Stages of the Load Instruction

 Cycle 1iCycle 2 | Cycle 3i Cycle 4i Cycle 5

SN A I I N S I

Iw | IFetch|pec | Exec | Mem | wB |

IFetch: Instruction Fetch and Update PC

Dec: Instruction Decode and Register fetch

Exec: Execute R-type; calculate memory address
Mem: Read/write the data from/to the Data Memory
WB: Write the result into the register file
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A Pipelined MIPS Processor

Start the next instruction before the current one has completed
Improves throughput - total amount of work done in a given time.

Instruction latency (time from the start of an instruction to its
completion) is not reduced. It is often increased due to imbalances
between stages.

§Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5§Cycle 6 §Cycle 7 §Cycle 8

T e e re_r

1w | IFetchl Dec | Exec | Mem | WB |
sw | IFetchl Dec | Exec | Mem | |
R-type | IFetchl Dec | Execl | WB |

Clock cycle (pipeline stage time) is limited by the slowest stage.
For some stages, we don’t need the whole clock cycle (e.g., WB).

For some instructions, some stages are wasted cycles (i.e., nothing is
done during that cycle for that instruction).

Pipeline Performance

| Single-cycle (cycle time = 800ps) |

Program
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| Pipelined (cycle time = 200ps) |
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200 ps 200 ps 200 ps 200 ps 200 ps
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Pipelining the MIPS ISA

What makes it easy
All instructions are the same length (32 bits)
Can fetch in the 15t stage and decode in the 2" stage.

Few instruction formats (three) with symmetry across
formats

Can begin reading register file in 2™ stage.
Memory operations occur only in loads and stores
Can use the execute stage to calculate memory addresses.

Each instruction writes at most one result (i.e., changes
the machine state) and does it in the last pipeline stages
(MEM or WB).

Operands must be aligned in memory so a single data
transfer takes only one data memory access.

Graphically Representing MIPS Pipeline

M | Reg@m Reg

Can help with answering questions like:
How many cycles does it take to execute this code?
What is the ALU doing during cycle 47?

Is there a hazard (whatever that is), why does it occur,
and how can it be fixed?

Cptr350 Chapter 4 — The Processor - Datapath



Five Instruction Sequence
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Other Pipeline Structures Are Possible

What about a slow multiply instruction?
Make the clock twice as slow or ...
Let it take two cycles (since it doesn’t use the DM

stage). r
M HlRe W Reg
I

What if the data memory access is twice as slow as
the instruction memory?

Make the clock twice as slow or ...

Let data memory access take two cycles (and keep the
same clock rate).

M | Reg% pm1]_{pm2| |Reg

(]
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Other Pipeline Architectures
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Latches and Clocks in Single-Cycle Design

Instr Reg Data
7o Mem File A Addr| R

I I

The entire instruction executes in a single cycle.

Green blocks are latches.

At the rising edge, a new PC is latched. 1

At the rising edge, the result of the previous cycle is Iatched.f

At the falling edge, the address of LW/SW is latched so we can
access the data memory in the 2™ half of the cycle.
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Multi-Stage Circuit

Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch.

Reg
File

| Pipeline Registers

' Need registers between stages to hold information
produced in previous cycle.

Cptr350 Chapter 4 — The Processor - Datapath



The Assembly Line

Unpipelined Start and finish a job before moving on.
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Instruction Decode and Reg ister Fetch
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| Memory Access (Load or Store)
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Corrected Datapath for Load Instruction
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Execute Stage for Store Instruction
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| Memory Access Stage for Store

| Write-back Stage for Store Instruction

sw

Write-back
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Performance Improvements?

Compared to single-cycle execution
Does it take longer to finish each individual instruction?
Does it take longer to finish a series of instructions?
Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

As a result of pipelining:
Time in ns/instruction increases.
Each instruction takes more cycles to execute.
But... average CPI remains roughly the same.
Clock speed goes up.

Total execution time goes down, resulting in lower average
time per instruction.

Under ideal conditions,

Speedup = ratio of elapsed times between successive
instruction completions = number of pipeline stages =
increase in clock speed
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Can Pipelining Get Us Into Trouble?

Yes: Pipeline Hazards

Structural hazards: attempt to use the same resource
by two different instructions at the same time.

Data hazards: attempt to use data before it is ready

An instruction’s source operand(s) are produced by a
prior instruction still in the pipeline.

Control hazards: attempt to make a decision about

program control flow before the condition has been

evaluated and the new PC target address calculated
Branch and jump instructions, exceptions.

Hazards can usually be resolved by waiting.

Pipeline control must detect the hazard and take
action to resolve it.

Summary

All modern day processors use pipelining.

Pipelining doesn’t help latency of single task, it helps
throughput of entire workload.

Potential speedup: a CPI of 1 and faster Clock Cycle.
Pipeline rate limited by slowest pipeline stage
Unbalanced pipe stages make for inefficiencies.

The time to “fill” pipeline and time to “drain” it can
impact speedup for deep pipelines and short code runs.

Must detect and resolve hazards
Stalling negatively affects CPI.
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