M COMPUTER ORGANIZATION AND DESIGN 5th

BT The Hardware/Software Interface > difion

| Chapter 4

| The Processor
Pipelining

| Single-Cycle Disadvantages & Advantages

l Uses the clock cycle inefficiently — the clock cycle

must be timed to accommodate the slowest
instruction.

This would be especially problematic for more complex
instructions like floating point multiply.

-~

Cycle % pi ¢ Cycle 2 =————
Clk I |

[Iw |

sw i Waste]

May be wasteful of area. Some functional units (e.g.,

adders, memory) must be duplicated since they can
not be shared during a clock cycle.

However, the single-cycle implementation is simple
and easy to understand.

Cptr350 Chapter 4 — The Processor - Datapath

The Single-Cycle Datapath

Instr[25-0])
\-/Shift >3 \32 1
26 \left2
PC+4[31-28]
Add 0
4
J PCSrc
ALUOS Branch e
MemRead
Instr{31-26] Control MemtoReg
Unit Memvvrite
ALUSrc
RegWrite
RegDst
ovf
Instruction wﬂ Read Addr 1 R
Memory Register _Read » ddress
Read Addr 2 Data 1 Data
Read N
PC Instr[31-0} File Memory Read Data
fddress Wite Addr e, Ny (A ry
Data 2 rite Data 0,
\Write Data

ALU
16 32 control
Instr{5-0]

The Five Stages of the Load Instruction

 Cycle 1iCycle 2 | Cycle 3i Cycle 4i Cycle 5

SN A I I N S I

Iw | IFetch|pec | Exec | Mem | wB |

IFetch: Instruction Fetch and Update PC

Dec: Instruction Decode and Register fetch

Exec: Execute R-type; calculate memory address
Mem: Read/write the data from/to the Data Memory
WB: Write the result into the register file

Cptr350 Chapter 4 — The Processor - Datapath

A Pipelined MIPS Processor

Start the next instruction before the current one has completed
Improves throughput - total amount of work done in a given time.

Instruction latency (time from the start of an instruction to its
completion) is not reduced. It is often increased due to imbalances
between stages.

§Cycle 1 ECycIe 2 Cycle 3 Cycle 4 Cycle 5§Cycle 6 §Cycle 7 §Cycle 8

T e e re_r

1w | IFetchl Dec | Exec | Mem | WB |
sw | IFetchl Dec | Exec | Mem | |
R-type | IFetchl Dec | Execl | WB |

Clock cycle (pipeline stage time) is limited by the slowest stage.
For some stages, we don’t need the whole clock cycle (e.g., WB).

For some instructions, some stages are wasted cycles (i.e., nothing is
done during that cycle for that instruction).

Pipeline Performance

| Single-cycle (cycle time = 800ps) |

Program
execution 200 400 600 800 1000 1200 1400 1600 1800
order e T T T T T T T T T
(in instructions)

Instructi Dat:
Iw $1,100($0) | "L " Reg‘ AU | o8| Reg
i D
Iw $2, 200($0) 800 ps nsiuction | Reg| ALU | D22 | Reg
Iw $3, 300($0) 800 ps Instruction
— - 800 ps
| Pipelined (cycle time = 200ps) |
Program
execution . 200 400 600 800 1000 1200 1400
Time T T T T T T T
order
(in instructions)
Iw $1,100($0) | "™eton | peg| AU | D@ |peg
Iw $2,200(30) 200 ps |™ection| |Reg| A | D2 |Reg
Iw $3, 300($0) 200 ps |"oton| Reg| ALY | D% |Reg

200 ps 200 ps 200 ps 200 ps 200 ps

Cptr350 Chapter 4 — The Processor - Datapath

Pipelining the MIPS ISA

What makes it easy
All instructions are the same length (32 bits)
Can fetch in the 15t stage and decode in the 2" stage.

Few instruction formats (three) with symmetry across
formats

Can begin reading register file in 2™ stage.
Memory operations occur only in loads and stores
Can use the execute stage to calculate memory addresses.

Each instruction writes at most one result (i.e., changes
the machine state) and does it in the last pipeline stages
(MEM or WB).

Operands must be aligned in memory so a single data
transfer takes only one data memory access.

Graphically Representing MIPS Pipeline

M | Reg@m Reg

Can help with answering questions like:
How many cycles does it take to execute this code?
What is the ALU doing during cycle 47?

Is there a hazard (whatever that is), why does it occur,
and how can it be fixed?

Cptr350 Chapter 4 — The Processor - Datapath

Five Instruction Sequence

I Time (clock cycles)

v

Once the
iMm R : DM R

,I, Inst 0 Reg |]_ ° pipeline is
s full, one
t] Inst 1 M H]Reg]! pM- R instruction is
r. eg[|]_ * completed
I} I every cycle,

Inst 2 Mt Regf ? DM [{Reg so CPI =1
;
a =
e
r| Inst3 iMm L Reg[: .[DM]_Reg

IM L Regf DM Reg
lInst4 eg P
Time to fill:the pipeline H

Other Pipeline Structures Are Possible

What about a slow multiply instruction?
Make the clock twice as slow or ...
Let it take two cycles (since it doesn’t use the DM

stage). r
M HlRe W Reg
I

What if the data memory access is twice as slow as
the instruction memory?

Make the clock twice as slow or ...

Let data memory access take two cycles (and keep the
same clock rate).

M | Reg% pm1]_{pm2| |Reg

(]

Cptr350 Chapter 4 — The Processor - Datapath

Other Pipeline Architectures

| ARM7
m O Reg_ EX
PC update decode ALU op
IM access reg DM access
access shift/rotate
commit result

(write back)

Motorola XScale

m1 |- im2]{Reg SHH‘ pm1] [Red
e | 4

PC update decode DM write
BTB access reg 1 access ALU op reg write

start IM access shiftrotate start DM access

IM access reg 2 access exception

Latches and Clocks in Single-Cycle Design

Instr Reg Data
7o Mem File A Addr| R

I I

The entire instruction executes in a single cycle.

Green blocks are latches.

At the rising edge, a new PC is latched. 1

At the rising edge, the result of the previous cycle is Iatched.f

At the falling edge, the address of LW/SW is latched so we can
access the data memory in the 2™ half of the cycle.

Cptr350 Chapter 4 — The Processor - Datapath

Multi-Stage Circuit

Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch.

Reg
File

| Pipeline Registers

' Need registers between stages to hold information
produced in previous cycle.

Cptr350 Chapter 4 — The Processor - Datapath

The Assembly Line

Unpipelined Start and finish a job before moving on.

Jobs
»Time
A| B | C Break the job into smaller stages.
A|B]|C
A|BJ|C
v AlB]|c]|
Pipelined

| Instruction Fetch

Iw
| |

Instruction fetch

o
‘ =
=

MMMMM

memory.

Cptr350 Chapter 4 — The Processor - Datapath

Instruction Decode and Reg ister Fetch
Iw
| |
I Instruction decode I
IF1D ID/EX EXMEM MEMWE
—
Add
4 —|
o
[
u B pe Fload
. Read
x register 1 Bead —1
Read
Instruction register2
—| Registers goaq (0
memory Write data 2| M
register u
Write x
data 4
16 e) %2
"> extend
Iw
ution
IF/D ID/EX EXIMEM MEMWB
Add
4 —»
]
[
u P~ pc Address < Read
x 2 register 1 Read ||
Ll g data 1
2 Read
Instruction 4 register 2
‘memory — g Fogsters —
register data 2
—>| Write
data
16 32
e

Cptr350 Chapter 4 — The Processor - Datapath

| Memory Access (Load or Store)

Iw
Memory

o ioex exwen wewwe
s
o= s 2
Shift resul
ez
PC & [Feas
] g AOTE CC
H o
| o
Instruction fogist
—
memary Fans
wi data 2/
18 sign- | 32
%> extend

| Write-back
|

Write back
4 —] Add Add)
o N
H ! data 1
= Read
Instruction *
" 4 Registers gqq
memery b |wite data2[|
data.
6 [sgm |2
extond
Wrong
register
number

Cptr350 Chapter 4 — The Processor - Datapath

10

Corrected Datapath for Load Instruction

FD ID/EX EXMEM MEMWB
—|
Add
4 —
0
u §
. L £ Read
— Read
rogister 1
: I b
-~ Read
Instruction P rogister2__
— Registers o0 e
| Write data 2! e
rogister
Wite
data
1© [sign |3
extend

Execute Stage for Store Instruction

sw

Execution
IF/ID ID/EX EX/MEM MEMWB
Add
4
]
[
u Address Read Read
x register 1 d:(‘: Y
Read Zero -
Instruction register 2 ALU ALY Read
memory > wiite Pegisters Lo resuit Address data ™
register data 2 Data
Write memory
data

Cptr350 Chapter 4 — The Processor - Datapath

11

| Memory Access Stage for Store

| Write-back Stage for Store Instruction

sw

Write-back

Cptr350 Chapter 4 — The Processor - Datapath

12

Performance Improvements?

Compared to single-cycle execution
Does it take longer to finish each individual instruction?
Does it take longer to finish a series of instructions?
Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

As a result of pipelining:
Time in ns/instruction increases.
Each instruction takes more cycles to execute.
But... average CPI remains roughly the same.
Clock speed goes up.

Total execution time goes down, resulting in lower average
time per instruction.

Under ideal conditions,

Speedup = ratio of elapsed times between successive
instruction completions = number of pipeline stages =
increase in clock speed

Cptr350 Chapter 4 — The Processor - Datapath

13

Can Pipelining Get Us Into Trouble?

Yes: Pipeline Hazards

Structural hazards: attempt to use the same resource
by two different instructions at the same time.

Data hazards: attempt to use data before it is ready

An instruction’s source operand(s) are produced by a
prior instruction still in the pipeline.

Control hazards: attempt to make a decision about

program control flow before the condition has been

evaluated and the new PC target address calculated
Branch and jump instructions, exceptions.

Hazards can usually be resolved by waiting.

Pipeline control must detect the hazard and take
action to resolve it.

Summary

All modern day processors use pipelining.

Pipelining doesn’t help latency of single task, it helps
throughput of entire workload.

Potential speedup: a CPI of 1 and faster Clock Cycle.
Pipeline rate limited by slowest pipeline stage
Unbalanced pipe stages make for inefficiencies.

The time to “fill” pipeline and time to “drain” it can
impact speedup for deep pipelines and short code runs.

Must detect and resolve hazards
Stalling negatively affects CPI.

Cptr350 Chapter 4 — The Processor - Datapath

14

